Variational Inference for Sparse Gaussian Process Modulated Hawkes Process
نویسندگان
چکیده
منابع مشابه
Variational Inference for Gaussian Process Modulated Poisson Processes
We present the first fully variational Bayesian inference scheme for continuous Gaussianprocess-modulated Poisson processes. Such point processes are used in a variety of domains, including neuroscience, geo-statistics and astronomy, but their use is hindered by the computational cost of existing inference schemes. Our scheme: requires no discretisation of the domain; scales linearly in the num...
متن کاملStochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
This paper presents a novel variational inference framework for deriving a family of Bayesian sparse Gaussian process regression (SGPR) models whose approximations are variationally optimal with respect to the full-rank GPR model enriched with various corresponding correlation structures of the observation noises. Our variational Bayesian SGPR (VBSGPR) models jointly treat both the distribution...
متن کاملVariational inference for sparse spectrum Gaussian process regression
We develop a fast variational approximation scheme for Gaussian process (GP) regression, where the spectrum of the covariance function is subjected to a sparse approximation. Our approach enables uncertainty in covariance function hyperparameters to be treated without using Monte Carlo methods and is robust to overfitting. Our article makes three contributions. First, we present a variational B...
متن کاملVariational Inference for Sparse Spectrum Approximation in Gaussian Process Regression
Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...
متن کاملSparse Variational Inference for Generalized Gaussian Process Models
Gaussian processes (GP) provide an attractive machine learning model due to their nonparametric form, their flexibility to capture many types of observation data, and their generic inference procedures. Sparse GP inference algorithms address the cubic complexity of GPs by focusing on a small set of pseudo-samples. To date, such approaches have focused on the simple case of Gaussian observation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.6160